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• Human-level machine perception with deep learning

• Algorithms and frameworks open source

• Short idea-to-product cycles

• Opportunities for companies but

• clear data collection strategy needed!
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• A bit about myself



Computing - why we are here!



Data - why we will have self-driving cars

The Cityscapes dataset

https://www.cityscapes-dataset.com/


Major areas in AI

• Speech recognition

• Image classification

• Machine translation

• Question-answering

• Self-driving vehicles

• Dialogue systems

• General

unsupervised
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ImageNet - image classification



ImageNet classification challenge

• AlexNet - A Krizhevsky et al. (2012) won with huge margin!

• Soon everyone started using deep learning and GPUs.



Feature engineering vs engineered models

www.cs.toronto.edu/~fritz/absps/imagenet.pdf

www.cs.toronto.edu/~fritz/absps/imagenet.pdf


Convolutional neural networks



We need bigger brains

• AlexNet (2012): 16.4% error, 8 layers, 1.4 Gflop

https://www.youtube.com/watch?v=npzRyTimcZo


We need bigger brains

• AlexNet (2012): 16.4% error, 8 layers, 1.4 Gflop

• ResNet (2016): 3.5% error, 152 layers, 22.6 Gflop.

• (This is a so-called DenseNet and not a ResNet.)

• Source: Source Jen-Hsun Huang, CEO NVIDIA, GTC Europe, 2016

https://www.youtube.com/watch?v=npzRyTimcZo


Deep learning – DTU and KU research group

• End-to-end!

• Structured data - sequences+

• Bioinformatics

• Information retrieval - search in

findzebra.com
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Deep learning – DTU and KU research group

• End-to-end!

• Structured data - sequences+

• Bioinformatics

• Information retrieval - search in

findzebra.com

• Condition monitoring –

Siemens Wind Power and

greengoenergy.com

• Document interpretation -

tradeshift.com

• Variational un- and

semi-supervised learning

findzebra.com
greengoenergy.com
tradeshift.com


Document interpretation with tradeshift.com

tradeshift.com


FindZebra search — findzebra.com

“When you hear hoofbeats behind you, don’t expect to see a zebra”

findzebra.com


Industrial PhD with Siemens Wind Power

• Data is there

• 10k turbines monitored for 5+ years with
• detailed vibration and other sensor data
• 100s of faults of different types

• Organisation already taking a data-driven approach.
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• Work by Martin Bach-Andersen, to appear in Wind Energy



Convolutional neural network for vibrational data
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