Learning Composite Events: Visual Exploration of Temporal Event Sequences through Volume and Variety

Andreas Mathisen PhD student

Volume and Variety

Temporal event sequence: a series of timestamped events (and potential attributes), which together form a sequence (or record).

Volume: number and length of event sequences.

Variety: number of event types (and event attributes) and variation in time.

Percent

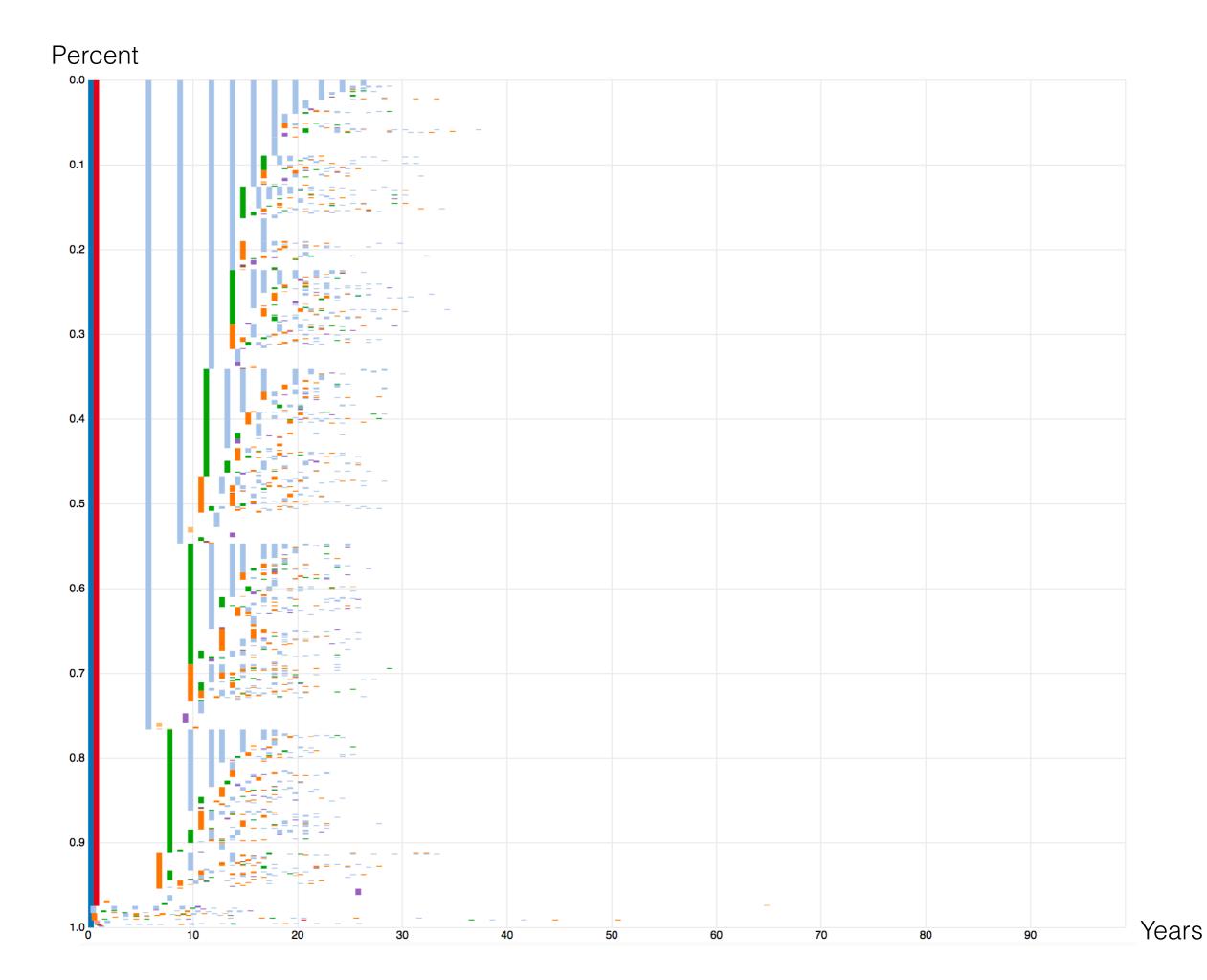
0.0	
0.0	
_	
_	
_	
_	
_	
_	
0.1	
0.1	
0.2	
0.3	
0.4	
0.4	
0.5	
0.6	
0.0	
1	
0.7	
ļ	
0.8	
\$	
0.9	
1.0	20 40 60 80 100 120 140 160 180
- U	CU 40 DU DU 100 IZU 140 IDU 180

Years

Composite Events

Goal: reduce variety to allow for aggregation of sequences that would otherwise be unique.

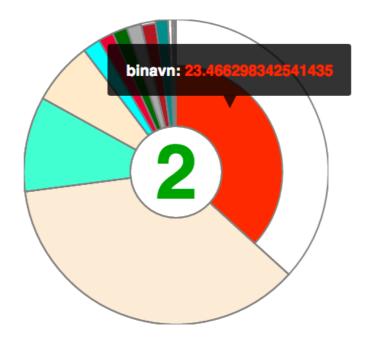
Idea: learn composite events based on time segments.



Challenges

Explain to users what the new high-level events mean

Find suitable parameters (number of clusters, time segment sizes)

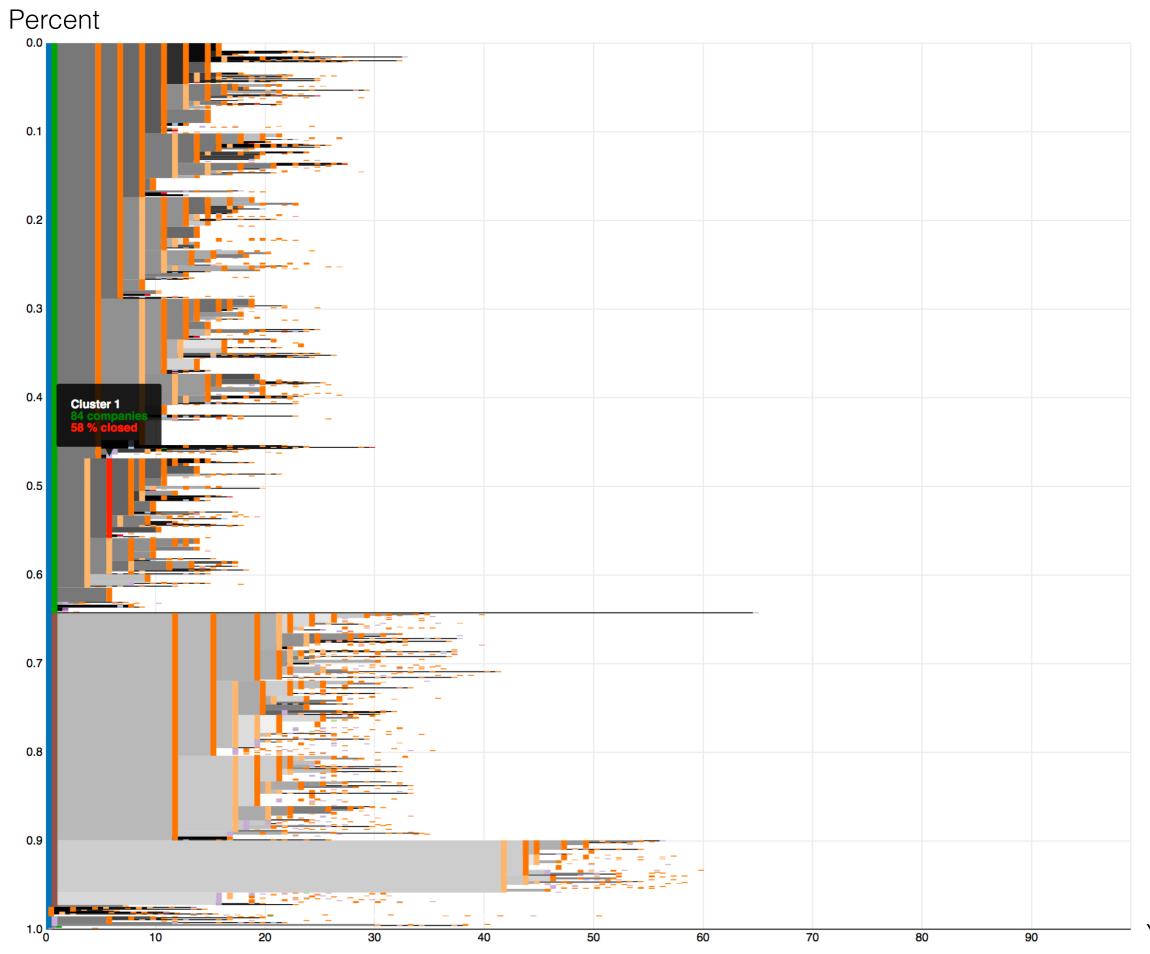


Sequence Outcomes

Sequence outcomes can be used for two things:

- 1. Give meaning to the composite event sequences.
- 2. Guide the automatic search for number of clusters and time segment sizes.

An example of an outcome is whether a company went bankrupt



Years

Computing Flood Risk Based on Sea-Level Forecast

Yujin Shin

PhD Student MADALGO, Aarhus University

Motivation

- Storm surge
 - Cyclone Xaver (DMI: Bodil, 4th December 2013)

Stormfloden efter Bodil sender stadig regninger til Stormrådet

630 mio. kr. er indtil nu blevet udbetalt til danskere, der var udsat for stormen Bodil.

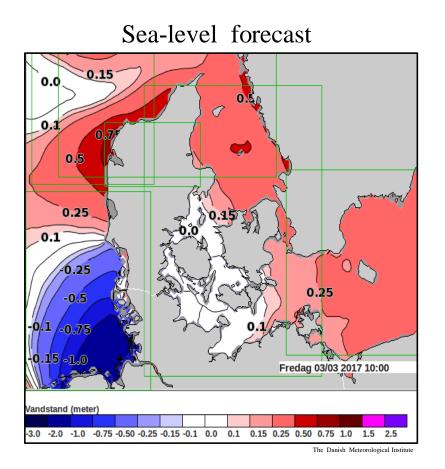
l alt har der været 2.973 sager til Stormrådet efter Bodil og på årsdagen mangler man at afslutte omkring 90 af dem. (Foto: Katrine Emilie Andersen © Scanpix)

Yujin Shin

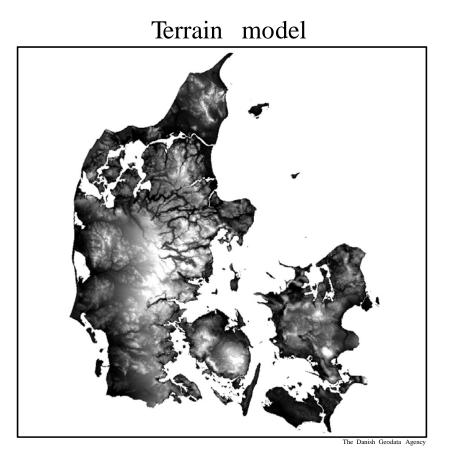
https://www.dr.dk/nyheder/regionale/sjaelland/stormfloden-efter-bodil-sender-stadig-regninger-til-stormraadet http://www.bt.dk/content/item/477962

Computing Flood Risk Based on Sea-Level Forecast

Flood Risk Computation



Sea-level forecasts of next 5 days Updated every 6 hours



Mesured in every 0.4 meter

Yujin Shin

Computing Flood Risk Based on Sea-Level Forecast

2/5

- 1. Handle massive terrain data
 - Reading and writing take more than 4 hours
- 2. Sea level is not the same everywhere
 - Existing algorithm is designed for uniform sea-level rise
- 3. Different resolutions
 - Terrain and sea-level data are measured by using different methods

- 1. Handle massive terrain data 🔸
 - Reading and writing take more than 4 hours
- 2. Sea level is not the same everywhere
 - Existing algorithm is designed for uniform sea-level rise
- 3. Different resolutions
 - Terrain and sea-level data are measured by using different methods

Input terrain

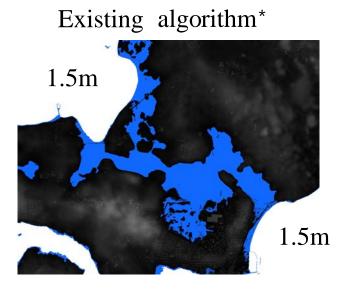
Almost 1 trillion cells! (420 GB) Cannot lower the resolution Cannot use parallelization

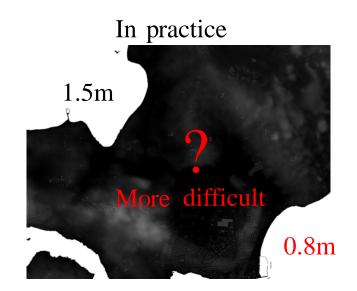
Output

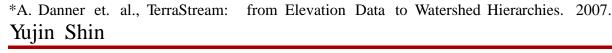
Write flooded water on each cell As large as the input terrain

Yujin Shin

- 1. Handle massive terrain data
 - Reading and writing take more than 4 hours
- 2. Sea level is not the same everywhere *
 - Existing algorithm is designed for uniform sea-level rise
- 3. Different resolutions
 - Terrain and sea-level data are measured by using different methods

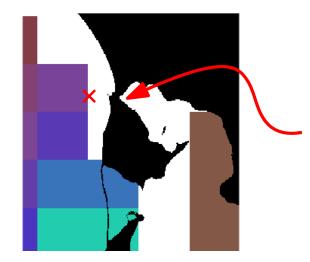






Computing Flood Risk Based on Sea-Level Forecast

- 1. Handle massive terrain data
 - Reading and writing take more than 4 hours
- 2. Sea level is not the same everywhere
 - Existing algorithm is designed for uniform sea-level rise
- 3. Different resolutions
 - Terrain and sea-level data are measured by using different methods



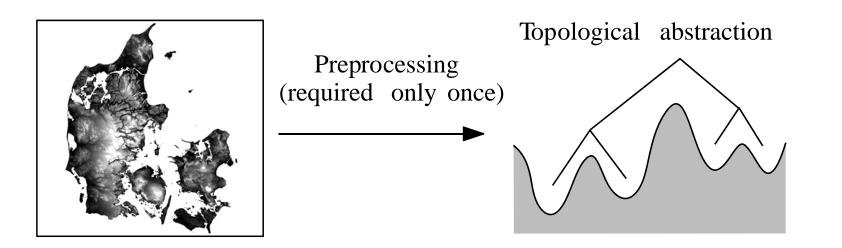
Cannot take the nearest cell (sea water does not cross the terrain)

Solutions

- 1. Handle massive terrain data
 - Reading and writing take more than 4 hours
- 2. Sea level is not the same everywhere
 - Existing algorithm is designed for uniform sea-level rise
- 3. Different resolutions
 - Terrain and sea-level data are measured by using different methods

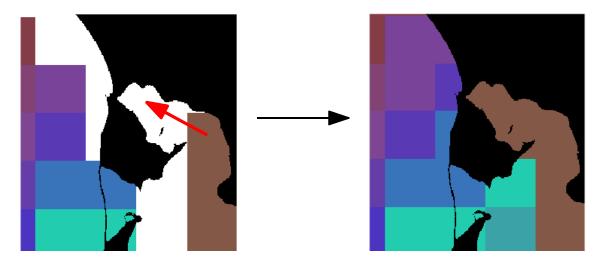
Solutions

- 1. Handle massive terrain data 🔸
 - Reading and writing take more than 4 hours
- 2. Sea level is not the same everywhere *
 - Existing algorithm is designed for uniform sea-level rise
- 3. Different resolutions
 - Terrain and sea-level data are measured by using different methods



Solutions

- 1. Handle massive terrain data
 - Reading and writing take more than 4 hours
- 2. Sea level is not the same everywhere
 - Existing algorithm is designed for uniform sea-level rise
- 3. Different resolutions *
 - Terrain and sea-level data are measured by using different methods



Future Work

- Avoid writing all the result
 - Use more compact representation
- Validation
 - Compare with real-world event
- Integrate with DMI
 - Real world application

Future Work

- Avoid writing all the result
 - Use more compact representation
- Validation
 - Compare with real-world event
- Integrate with DMI
 - Real world application

Yujin Shin

Svend Christian Svendsen

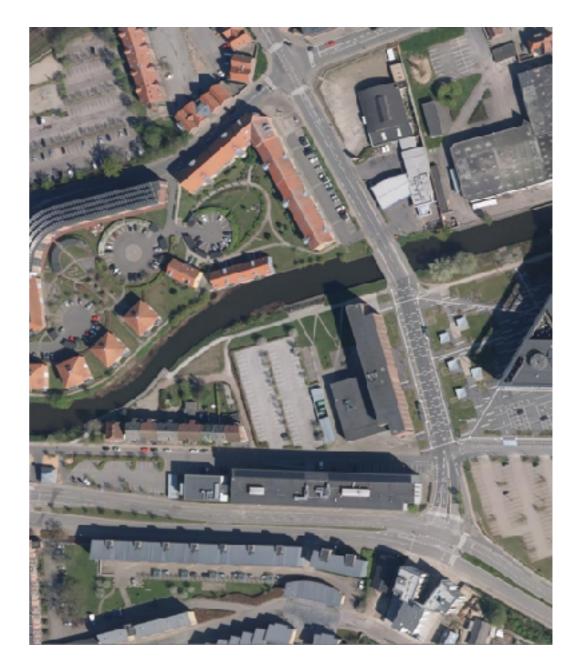
Effective (semi-automatic) identification of hydrological corrections

Who am I?

- PhD Student at DABAI since 2016
- Supervised by Prof. Lars Arge
- Research interest in I/O efficient Algorithms

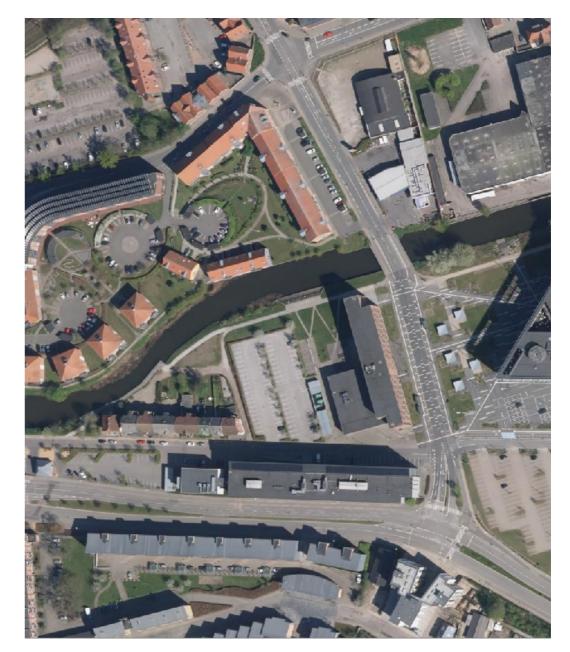
Correction Identification

- Condition terrain data
 - Removal of bridges
 - Inclusion of culverts



Current Solutions

- Traditionally done manually and with local input
- Expensive and time consuming
- Error prone



Current Solutions

- Use road and river data to burn river lines into data
- Alignment issues
- Missing small streams and drainage pipes

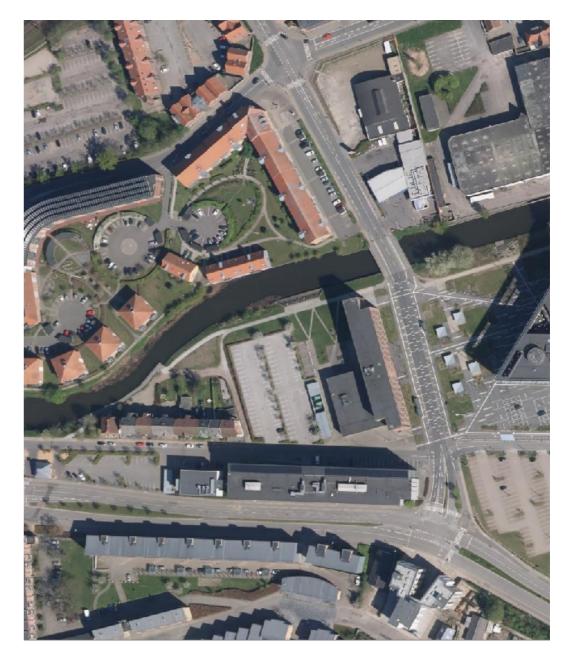
Feature Extraction

- Terrain model
- Orthophotos
- Flow Accumulation
- Flash-Flood Mapping



Training

- Select techniques with success in similar areas
- Apply machine learning algorithms to detect hydrological corrections
- Generalise to detection of hydrological corrections on new data



Big Data Challenges in the City of Copenhagen

Casper Hansen

Department of Computer Science University of Copenhagen

DTU, Mar 29, 2017

Planned projects

Ongoing

 Predicting future service need for citizens receiving home care (danish: hjemmehjælp)

Future

- (Social) Case worker assistance
- Social fraud detection
- Early intervention in the child and youth area

Predicting future service needs in home care

Data

- Daily log of received services (medicine help, laundry, cooking, rehabilitation, etc.)
- Journal data on each citizen ("Michael fell down the stairs and is feeling unwell")
- Hospitalization info (duration and admitted hospital units)

Data processing

- Aggregate historical past using one-hot encoding for categorical variables
- NLP for journal data (sentiment + top N keywords)

Predicting future service needs in home care

Initial basic approach

- Predict if a citizen will need an increased/not increased number of <u>hours of help</u>
- Predict if a citizen has a high risk of being <u>hospitalized</u> (or rehospitalized)
- Time series prediction. Using X months historical data, predict the target variable in the following Y months?

Initial basic results with a random forest:

• Using just the daily log data with a binary variable of increased/not increased number of hours, yields an average 77% accuracy on both labels.

DABAI education

Niklas Hjuler PhD student DIKU DTU 29-03-2017

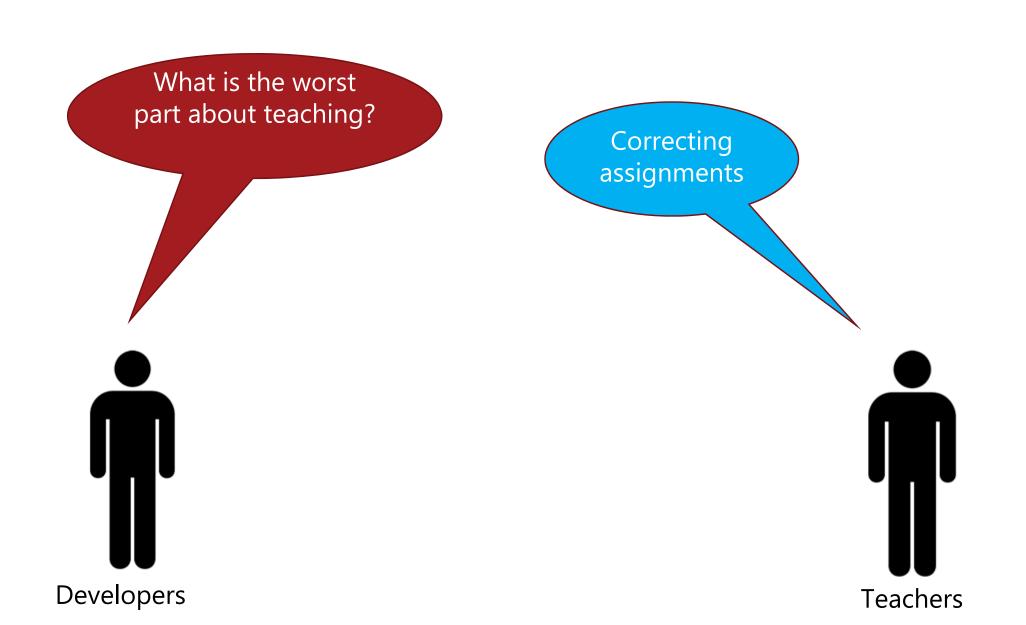
UNIVERSITY OF COPENHAGEN

Introduction

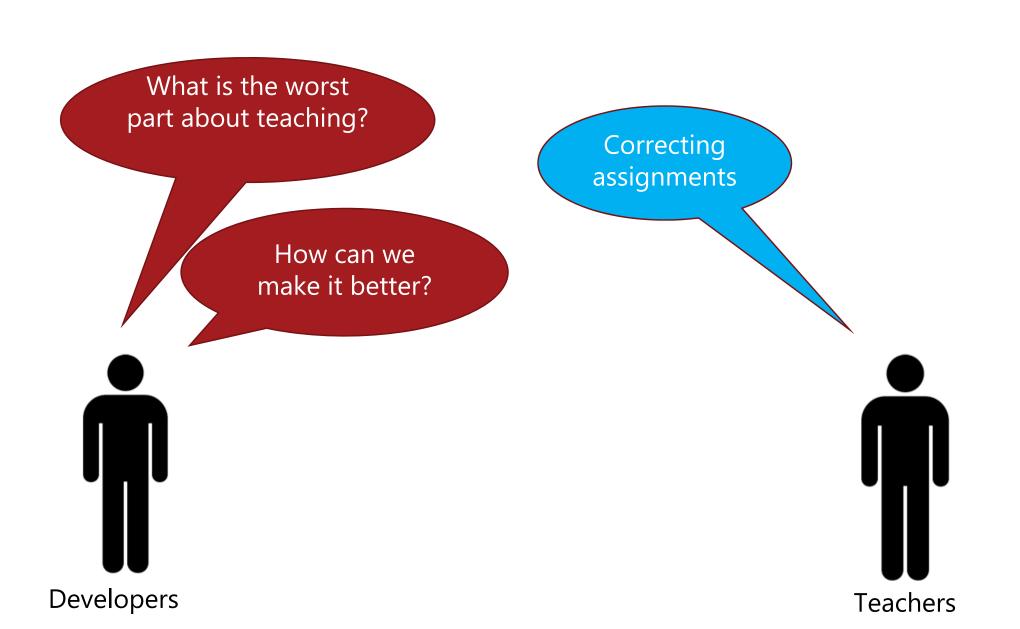
What is the worst part about teaching?

Developers

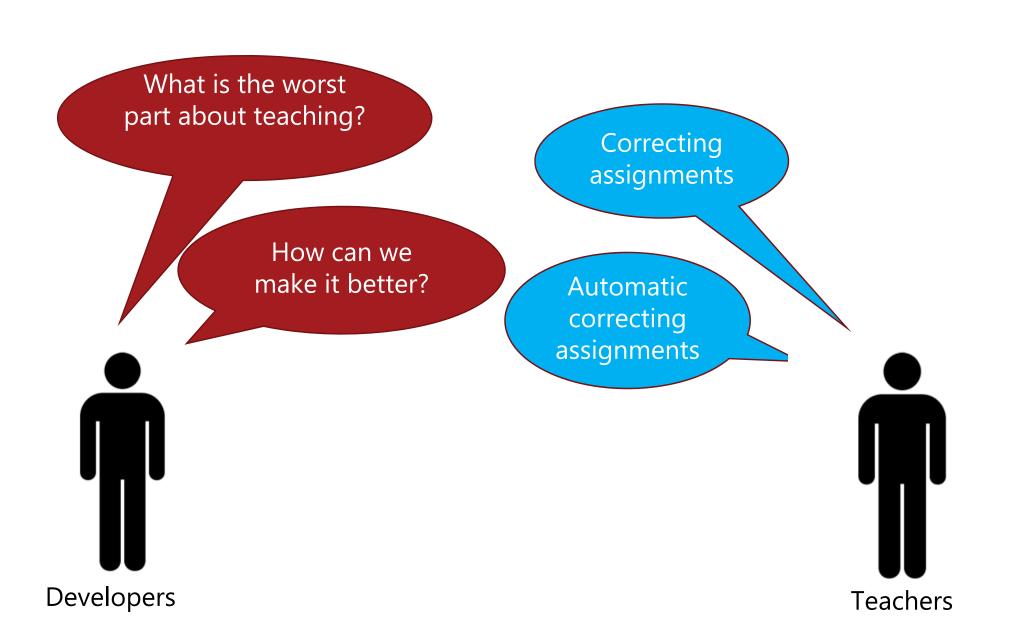
Introduction



Introduction



Introduction



• Teacher don't want to spend too much time on correcting assignments.

• Teacher don't want to spend too much time on correcting assignments.

• But some information is "lost" when the teacher is no longer correcting the assignments

• To solve the loss of information developers show teacher some statistics about his students

Grade Items			🛱 Print
Grade Item	Points	Weight Achieved	Grade
Exam 1	70 / 100	17.5 / 25	70 %
Exam 2	85 / 100	21.25 / 25	85 %
Exam 3	90 / 100	22.5 / 25	90 %
Quizzes		24 / 25	
Quiz 1	50 / 50	5 / 5	100 %
Quiz 2	50 / 50	5 / 5	100 %
Quiz 3	45 / 50	4.5 / 5	90 %
Quiz 4	45 / 50	4.5 / 5	90 %
Quiz 5	50 / 50	5 / 5	100 %

- To solve the loss of information developers show teacher some statistics about his students
- This statistics is only based on the students own data

Grade Items			📩 Print
Grade Item	Points	Weight Achieved	Grade
Exam 1	70 / 100	17.5 / 25	70 %
Exam 2	85 / 100	21.25 / 25	85 %
Exam 3	90 / 100	22.5 / 25	90 %
Quizzes		24 / 25	
Quiz 1	50 / 50	5 / 5	100 %
Quiz 2	50 / 50	5 / 5	100 %
Quiz 3	45 / 50	4.5 / 5	90 %
Quiz 4	45 / 50	4.5 / 5	90 %
Quiz 5	50 / 50	5 / 5	100 %

- To solve the loss of information developers show teacher some statistics about his students
- This statistics is only based on the students own data
- And not the data of all students (i.e. it makes no prediction)

Grade Items			🚔 Print
Grade Item	Points	Weight Achieved	Grade
Exam 1	70 / 100	17.5 / 25	70 %
Exam 2	85 / 100	21.25 / 25	85 %
Exam 3	90 / 100	22.5 / 25	90 %
Quizzes		24 / 25	
Quiz 1	50 / 50	5 / 5	100 %
Quiz 2	50 / 50	5 / 5	100 %
Quiz 3	45 / 50	4.5 / 5	90 %
Quiz 4	45 / 50	4.5 / 5	90 %
Quiz 5	50 / 50	5 / 5	100 %

• When all the data is gathered in one place, we can use the data of other students as well.

- When all the data is gathered in one place, we can use the data of other students as well.
- Which means we calculate how similar different quizzes are. By similar we mean the same students are good/bad.

- When all the data is gathered in one place, we can use the data of other students as well.
- Which means we calculate how similar different quizzes are. By similar we mean the same students are good/bad.
- 1. Find similar/dissimilar quizzes

- When all the data is gathered in one place, we can use the data of other students as well.
- Which means we calculate how similar different quizzes are. By similar we mean the same students are good/bad.
- 1. Find similar/dissimilar quizzes
- 2. Finding the error source(s) of a quiz

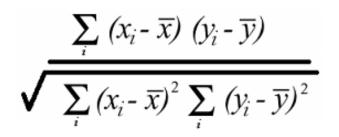
- When all the data is gathered in one place, we can use the data of other students as well.
- Which means we calculate how similar different quizzes are. By similar we mean the same students are good/bad.
- 1. Find similar/dissimilar quizzes
- 2. Finding the error source(s) of a quiz
- 3. Predict what the student have troubles with

- When all the data is gathered in one place, we can use the data of other students as well.
- Which means we calculate how similar different quizzes are. By similar we mean the same students are good/bad.
- 1. Find similar/dissimilar quizzes
- 2. Finding the error source(s) of a quiz
- 3. Predict what the student have troubles with
- 4. Cover the curriculum in a few number of quizzes

DABAI

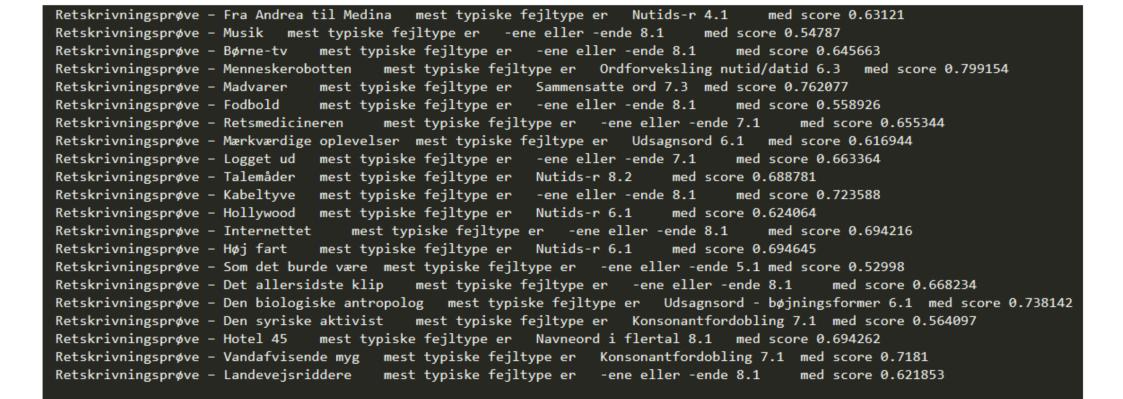
Pearson correlation as similarity

• Pearson correlation between quizzes:



Pearson correlation as similarity

• Pearson correlation between quizzes:

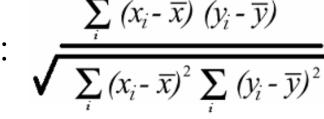


19

 $\sum_{i} (x_i - \overline{x}) (y_i - \overline{y})$ $\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}$

Pearson correlation as similarity

• Pearson correlation between quizzes:



 Initial conclusion: Nutids-r and ene/ende often has the highest correlation with writing tests.

Retskrivningsprøve – Fra Andrea til Medina mest typiske fejltype er Nutids-r 4.1 med score 0.63121 Retskrivningsprøve – Musik mest typiske fejltype er -ene eller -ende 8.1 med score 0.54787 Retskrivningsprøve - Børne-tv mest typiske fejltype er -ene eller -ende 8.1 med score 0.645663 mest typiske fejltype er Ordforveksling nutid/datid 6.3 med score 0.799154 Retskrivningsprøve - Menneskerobotten Retskrivningsprøve – Madvarer mest typiske fejltype er Sammensatte ord 7.3 med score 0.762077 mest typiske fejltype er -ene eller -ende 8.1 Retskrivningsprøve - Fodbold med score 0.558926 Retskrivningsprøve – Retsmedicineren mest typiske fejltype er -ene eller -ende 7.1 med score 0.655344 Retskrivningsprøve – Mærkværdige oplevelser mest typiske fejltype er Udsagnsord 6.1 med score 0.616944 Retskrivningsprøve – Logget ud mest typiske fejltype er 🛛 -ene eller -ende 7.1 med score 0.663364 mest typiske fejltype er Retskrivningsprøve – Talemåder Nutids-r 8.2 med score 0.688781 mest typiske fejltype er -ene eller -ende 8.1 Retskrivningsprøve – Kabeltyve med score 0.723588 mest typiske fejltype er Nutids-r 6.1 Retskrivningsprøve - Hollywood med score 0.624064 Retskrivningsprøve - Internettet mest typiske fejltype er -ene eller -ende 8.1 med score 0.694216 mest typiske fejltype er Nutids-r 6.1 Retskrivningsprøve – Høj fart med score 0.694645 Retskrivningsprøve – Som det burde være mest typiske fejltype er -ene eller -ende 5.1 med score 0.52998 Retskrivningsprøve – Det allersidste klip mest typiske fejltype er ene eller ende 8.1 med score 0.668234 Retskrivningsprøve – Den biologiske antropolog mest typiske fejltype er Udsagnsord - bøjningsformer 6.1 med score 0.738142 Retskrivningsprøve – Den syriske aktivist mest typiske fejltype er Konsonantfordobling 7.1 med score 0.564097 Retskrivningsprøve – Hotel 45 mest typiske fejltype er Navneord i flertal 8.1 med score 0.694262 Retskrivningsprøve – Vandafvisende myg mest typiske fejltype er Konsonantfordobling 7.1 med score 0.7181 mest typiske fejltype er 🛛 -ene eller -ende 8.1 Retskrivningsprøve – Landevejsriddere med score 0.621853

20

04/04/2017

Thank you

- Identify error source (Done)
- Find similar/dissimilar quiz (Done)
- Predicting where the student have problems. (Future work)
- Cover the curriculum as good as possible in a fixed number of quizzes (Future work)

Faculty of Science

Detecting ghost-writing in high school assignments

Stephan Sloth Lorenzen

ph.d. student Department of Computer Science, University of Copenhagen

March 29th, 2017 Slide 1/11

Large problem in academics (secondary education and universities):

Students hire teachers, professionals, etc. to write their assignments - this is known as *ghost-writing*.

¹http://www.thebestschools.org/resources/ghostwriting-business-tradestandards-practices-secrets/

Slide 2/11 — Stephan Sloth Lorenzen — Detecting ghost-writing in high school assignments — March 29th, 2017

Large problem in academics (secondary education and universities): Students hire teachers, professionals, etc. to write their

assignments - this is known as ghost-writing.

In universities in the U.S., 7% of students admit to cheating by handing in assignments written by others [*McCabe'05*].

 $^{1} http://www.thebestschools.org/resources/ghostwriting-business-trade-standards-practices-secrets/$

Large problem in academics (secondary education and universities): Students hire teachers, professionals, etc. to write their

assignments - this is known as ghost-writing.

In universities in the U.S., 7% of students admit to cheating by handing in assignments written by others [*McCabe'05*].

Ghost-writing has become an industry: more than 300 online services¹ providing ghost-writing for payment exist.

¹http://www.thebestschools.org/resources/ghostwriting-business-tradestandards-practices-secrets/

Slide 2/11 — Stephan Sloth Lorenzen — Detecting ghost-writing in high school assignments — March 29th, 2017

DEPARTMENT OF COMPUTER SCIENCE

Motivation

In Denmark, the problem has recently received more attention, as high school students hire ghost-writers to write their SRPs (large written third-year assignment).

In Denmark, the problem has recently received more attention, as high school students hire ghost-writers to write their SRPs (large written third-year assignment).

Data available from MaCom:

MaCom is the company behind the learning platform Lectio:

In Denmark, the problem has recently received more attention, as high school students hire ghost-writers to write their SRPs (large written third-year assignment).

Data available from MaCom:

MaCom is the company behind the learning platform Lectio:

- Lectio is used by 90% of Danish high schools.

In Denmark, the problem has recently received more attention, as high school students hire ghost-writers to write their SRPs (large written third-year assignment).

Data available from MaCom:

MaCom is the company behind the learning platform Lectio:

- Lectio is used by 90% of Danish high schools.
- Covers more than 150,000 students.

In Denmark, the problem has recently received more attention, as high school students hire ghost-writers to write their SRPs (large written third-year assignment).

Data available from MaCom:

MaCom is the company behind the learning platform Lectio:

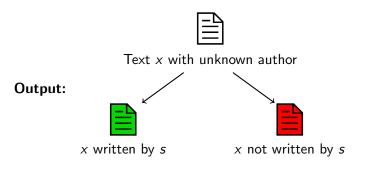
- Lectio is used by 90% of Danish high schools.
- Covers more than 150,000 students.
- More than 15 million written assignments handed in.

The problem: Refuting authorship

Input:

Student s

Set of texts (assumed written by student)





Each assignment is given in plain text with a student id, subject. A feature vector is then constructed for each assignment.

Each assignment is given in plain text with a student id, subject. A feature vector is then constructed for each assignment.

Textual features

- Average word length
- Average sentence length
- Ratio between number of commas and periods
- and more ...

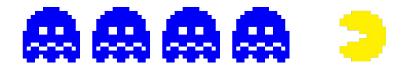
Each assignment is given in plain text with a student id, subject. A feature vector is then constructed for each assignment.

Textual features

- Average word length
- Average sentence length
- Ratio between number of commas and periods
- and more ...

We assume that previous hand-ins are written by the given student.

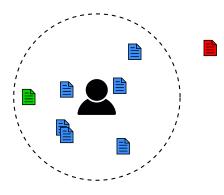
Methods for detecting ghost-writers



Slide 7/11 — Stephan Sloth Lorenzen — Detecting ghost-writing in high school assignments — March 29th, 2017

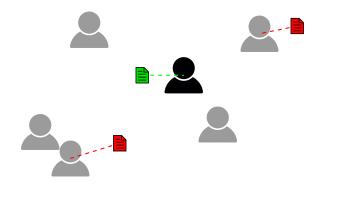
Method: distance based

Idea: construct profile vector for *s* based on earlier assignments (e.g. as the cluster center for assignments). Accept new assignment x if x is within an acceptable distance (compared to earlier assignments) from the profile, and reject x otherwise.



Method: distance based with imposters

Idea: construct profile vector for $s_0 = s$ and for several other students, $s_1, s_2, ..., s_m$. Accept new assignment x if x is closest to profile for s_0 , and reject x otherwise.



Idea: train a classifier C based on the feature vectors for assignments handed in by $s_0 = s$ and several other students, $s_1, s_2, ..., s_m$. Accept new assignment x if C predicts that x is written by s_0 , and reject x otherwise.

Idea: train a classifier C based on the feature vectors for assignments handed in by $s_0 = s$ and several other students, $s_1, s_2, ..., s_m$. Accept new assignment x if C predicts that x is written by s_0 , and reject x otherwise.

Any multi-class classifier can be used. E.g.:

Idea: train a classifier C based on the feature vectors for assignments handed in by $s_0 = s$ and several other students, $s_1, s_2, ..., s_m$. Accept new assignment x if C predicts that x is written by s_0 , and reject x otherwise.

Any multi-class classifier can be used. E.g.:

- Support Vector Machines (SVM).

Idea: train a classifier C based on the feature vectors for assignments handed in by $s_0 = s$ and several other students, $s_1, s_2, ..., s_m$. Accept new assignment x if C predicts that x is written by s_0 , and reject x otherwise.

Any multi-class classifier can be used. E.g.:

- Support Vector Machines (SVM).
- Random forests.

Idea: train a classifier C based on the feature vectors for assignments handed in by $s_0 = s$ and several other students, $s_1, s_2, ..., s_m$. Accept new assignment x if C predicts that x is written by s_0 , and reject x otherwise.

Any multi-class classifier can be used. E.g.:

- Support Vector Machines (SVM).
- Random forests.

Experiments with MaCom data (using SVM) achieves accuracy of $\simeq 70\%$ [Hansen, Lioma, Larsen, Alstrup 2014].

We wish to improve upon the previous results.

We wish to improve upon the previous results. This is done by:

We wish to improve upon the previous results. This is done by:

- Considering more textual features.

We wish to improve upon the previous results. This is done by:

- Considering more textual features.
- Considering new methods/methods not used before in this domain (e.g. methods from *outlier detection*).

We wish to improve upon the previous results. This is done by:

- Considering more textual features.
- Considering new methods/methods not used before in this domain (e.g. methods from *outlier detection*).

Future research: detecting student progress.

The writing style of a student may change over time; using the techniques discussed here, we can detect this change and thus the progress of the student.