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Volume and Variety

Temporal event sequence: a series of timestamped events 
(and potential attributes), which together form a sequence (or 
record). 

Volume: number and length of event sequences. 

Variety: number of event types (and event attributes) and 
variation in time. 
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Composite Events

Goal: reduce variety to allow for aggregation of 
sequences that would otherwise be unique. 

Idea: learn composite events based on time 
segments. 
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Challenges

Explain to users what the new high-level events mean 

Find suitable parameters (number of clusters, time segment sizes)



Sequence Outcomes

Sequence outcomes can be used for two things: 

1. Give meaning to the composite event 
sequences. 

2. Guide the automatic search for number of 
clusters and time segment sizes. 

An example of an outcome is whether a company 
went bankrupt
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Motivation
Storm surge
– Cyclone Xaver (DMI: Bodil, 4th December 2013)

•

https://www.dr.dk/nyheder/regionale/sjaelland/stormfloden-efter-bodil-sender-stadig-regninger-til-stormraadet
http://www.bt.dk/content/item/477962Yujin Shin
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Flood Risk Computation
Sea-level forecast Terrain model

The Danish Geodata AgencyThe Danish Meteorological Institute

Sea- level forecasts of next 5 days
Updated every 6 hours

Mesured in every 0.4 meter

Yujin Shin
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Issues
1. Handle massive terrain data

- Reading and writing take more than 4 hours
Sea level is not the same everywhere
- Existing algorithm is designed for uniform sea-level rise
Different resolutions

2.

3.
- Terrain and sea-level data are measured by using different methods

Yujin Shin
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Issues
1. Handle massive terrain data ∗

- Reading and writing take more than 4 hours
Sea level is not the same everywhere
- Existing algorithm is designed for uniform sea-level rise
Different resolutions
- Terrain and sea-level data are measured by using different methods

2.

3.

Input terrain
Almost
Cannot
Cannot

1 trillion cells! (420 GB)
lower the resolution 
use parallelization

Output
Write flooded water on each
As large as the input terrain

cell
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Issues
1. Handle massive terrain data

- Reading and writing take more than 4 hours
2. Sea level is not the same everywhere ∗

- Existing algorithm is designed for uniform sea-level rise
Different resolutions
- Terrain and sea-level data are measured by using different methods

3.

Existing algorithm∗ In practice

1.5m 1.5m

?
difficultMore

1.5m 0.8m

*A. Danner et. al., TerraStream:
Yujin Shin

from Elevation Data to Watershed Hierarchies. 2007.
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Issues
1. Handle massive terrain data

- Reading and writing take more than 4 hours
Sea level is not the same everywhere
- Existing algorithm is designed for uniform sea-level rise
Different resolutions

2.

3.
- Terrain and sea-level data are measured by using different methods

Cannot take the nearest cell
(sea water does not cross the terrain)
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Solutions
1. Handle massive terrain data

- Reading and writing take more than 4 hours
Sea level is not the same everywhere
- Existing algorithm is designed for uniform sea-level rise
Different resolutions

2.

3.
- Terrain and sea-level data are measured by using different methods
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Solutions
1. Handle massive terrain data ∗

- Reading and writing take more than 4 hours
2. Sea level is not the same everywhere ∗

- Existing algorithm is designed for uniform sea-level rise
Different resolutions
- Terrain and sea-level data are measured by using different methods

3.

Topological abstraction
Preprocessing

(required only once)
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Solutions
1. Handle massive terrain data

- Reading and writing take more than 4 hours
Sea level is not the same everywhere
- Existing algorithm is designed for uniform sea-level rise

2.

3. Different resolutions ∗
- Terrain and sea-level data are measured by using different methods

Yujin Shin
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Future Work
Avoid writing all the result
– Use more compact representation
Validation
– Compare with real-world event
Integrate with DMI
– Real world application

•

•

•
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Future Work
Avoid writing all the result
– Use more compact representation
Validation
– Compare with real-world event
Integrate with DMI
– Real world application

•

•

•

Thank you.

Yujin Shin
5/5Computing Flood Risk Based on Sea-Level Forecast



Svend Christian Svendsen
Effective (semi-automatic) identification of hydrological 

corrections



Who am I?

• PhD Student at DABAI since 2016 

• Supervised by Prof. Lars Arge 

• Research interest in I/O efficient Algorithms



Correction Identification

• Condition terrain data 

• Removal of bridges 

• Inclusion of culverts









Current Solutions

• Traditionally done manually 
and with local input 

• Expensive and time 
consuming 

• Error prone



Current Solutions

• Use road and river data to 
burn river lines into data 

• Alignment issues 

• Missing small streams and 
drainage pipes



Feature Extraction

• Terrain model 

• Orthophotos 

• Flow Accumulation 

• Flash-Flood Mapping 



Training

• Select techniques with 
success in similar areas 

• Apply machine learning 
algorithms to detect 
hydrological corrections 

• Generalise to detection of 
hydrological corrections on 
new data
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Planned projects

Ongoing
• Predicting future service need for citizens receiving home care 
(danish: hjemmehjælp)

Future
• (Social) Case worker assistance
• Social fraud detection
• Early intervention in the child and youth area

2



Predicting future service needs in home care

Data
• Daily log of received services (medicine help, laundry, cooking, 
rehabilitation, etc.)

• Journal data on each citizen (“Michael fell down the stairs and is 
feeling unwell”)

• Hospitalization info (duration and admitted hospital units)

Data processing
• Aggregate historical past using one‐hot encoding for categorical 
variables

• NLP for journal data (sentiment + top N keywords)
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Predicting future service needs in home care

Initial basic approach
• Predict if a citizen will need an increased/not increased number of 
hours of help

• Predict if a citizen has a high risk of being hospitalized (or re‐
hospitalized)

• Time series prediction. Using X months historical data, predict the 
target variable in the following Y months?

Initial basic results with a random forest: 
• Using just the daily log data with a binary variable of increased/not 
increased number of hours, yields an average 77% accuracy on both 
labels.  4
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Introduction
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part about teaching?

TeachersDevelopers
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Introduction
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What is the worst 
part about teaching?

Correcting 
assignments

How can we 
make it better? Automatic 

correcting 
assignments

TeachersDevelopers



Motivation
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Motivation

• Teacher don’t want to spend too much time on 
correcting assignments.
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Motivation

• Teacher don’t want to spend too much time on 
correcting assignments.

• But some information is “lost” when the teacher is no 
longer  correcting the assignments
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Motivation

• To solve the loss of information developers show 
teacher some statistics about his students
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Motivation

• To solve the loss of information developers show 
teacher some statistics about his students

• This statistics is only based on the students own data
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Motivation

• To solve the loss of information developers show 
teacher some statistics about his students

• This statistics is only based on the students own data 
• And not the data of all students (i.e. it makes no 

prediction)
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Description - Similarity among quizzes 

• When all the data is gathered in one place, we can use 
the data of other students as well.
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Description - Similarity among quizzes 
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quizzes are. By similar we mean the same students are 
good/bad.
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Description - Similarity among quizzes 

• When all the data is gathered in one place, we can use 
the data of other students as well.

• Which means we calculate how similar different 
quizzes are. By similar we mean the same students are 
good/bad.

1. Find similar/dissimilar quizzes
2. Finding the error source(s) of a quiz
3. Predict what the student have troubles with
4. Cover the curriculum in a few number of quizzes
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Pearson correlation as similarity

• Pearson correlation between quizzes:
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Pearson correlation as similarity

• Pearson correlation between quizzes:
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Pearson correlation as similarity

• Pearson correlation between quizzes:

• Initial conclusion: Nutids-r and ene/ende often has the 
highest correlation with writing tests.
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Thank you

• Identify error source (Done)
• Find similar/dissimilar quiz (Done)
• Predicting where the student have problems. (Future 

work)
• Cover the curriculum as good as possible in a fixed 

number of quizzes (Future work)

04/04/2017 21
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Motivation

Large problem in academics (secondary education and
universities):
Students hire teachers, professionals, etc. to write their
assignments - this is known as ghost-writing.

In universities in the U.S., 7% of students admit to cheating by
handing in assignments written by others [McCabe’05].

Ghost-writing has become an industry: more than 300 online
services1 providing ghost-writing for payment exist.

1http://www.thebestschools.org/resources/ghostwriting-business-trade-
standards-practices-secrets/
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Motivation: Danish Perspective

In Denmark, the problem has recently received more attention, as
high school students hire ghost-writers to write their SRPs (large
written third-year assignment).

Data available from MaCom:
MaCom is the company behind the learning platform Lectio:

- Lectio is used by 90% of Danish high schools.

- Covers more than 150,000 students.

- More than 15 million written assignments handed in.
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The problem: Refuting authorship

Input:

Student s Set of texts (assumed written by student)

Text x with unknown author

Output:

x written by s x not written by s
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Data

Each assignment is given in plain text with a student id, subject. A
feature vector is then constructed for each assignment.

Textual features

- Average word length

- Average sentence length

- Ratio between number of commas and periods

- and more...

We assume that previous hand-ins are written by the given student.
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Methods for detecting ghost-writers
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Method: distance based

Idea: construct profile vector for s based on earlier assignments
(e.g. as the cluster center for assignments). Accept new
assignment x if x is within an acceptable distance (compared to
earlier assignments) from the profile, and reject x otherwise.
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Method: distance based with imposters

Idea: construct profile vector for s0 = s and for several other
students, s1, s2, ..., sm. Accept new assignment x if x is closest to
profile for s0, and reject x otherwise.
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Method: classification with imposters

Idea: train a classifier C based on the feature vectors for
assignments handed in by s0 = s and several other students,
s1, s2, ..., sm. Accept new assignment x if C predicts that x is
written by s0, and reject x otherwise.

Any multi-class classifier can be used. E.g.:

- Support Vector Machines (SVM).

- Random forests.

Experiments with MaCom data (using SVM) achieves accuracy of
' 70% [Hansen, Lioma, Larsen, Alstrup 2014].
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The goal

We wish to improve upon the previous results.

This is done by:

- Considering more textual features.

- Considering new methods/methods not used before in this
domain (e.g. methods from outlier detection).

Future research: detecting student progress.
The writing style of a student may change over time; using the
techniques discussed here, we can detect this change and thus the
progress of the student.
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